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1. Introduction

At zero temperature, the spectrum of QCD is encoded in hadronic spectral functions.

Groundstates, excited states, decay widths and continuum contributions can, in principle,

be extracted from spectral functions in different channels. Similarly, at finite temperature

and/or density, medium modification of hadrons, the rate of photon and dilepton produc-

tion, and hydrodynamical response functions can be obtained from the appropriate spectral

functions.

Spectral functions are inherently real-time correlation functions and therefore difficult

to obtain using standard lattice QCD data analysis techniques. Since euclidean lattice

correlation functions are determined numerically on a finite number of points in imaginary

time only, the analytical continuation to real time is classified as an ill-posed problem. In

the past few years significant progress in the extraction of spectral functions from lattice

QCD has come from the application of the Maximum Entropy Method (MEM) to this

problem. MEM has been applied in many branches of science (see e.g. ref. [1] for a review),

a thorough review focussing on lattice QCD can be found in ref. [2].

In order to interpret hadronic spectral functions obtained in lattice QCD, it is im-

portant to understand how lattice artefacts will appear. Lattice artefacts are expected to

be present at large frequencies and may be studied in perturbation theory. Free lattice

meson spectral functions have been studied at zero momentum for Wilson and hypercube

fermions [3] and at nonzero momentum for Wilson and staggered fermions [4]. In this paper

our first goal is to study lattice meson spectral functions for chirally symmetric fermions,
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specifically overlap [5, 6], domain wall [7 – 9], and overlap hypercube [10, 11] fermions.

Furthermore we present results for meson spectral functions obtained with the Maximum

Entropy Method in QCD with 2+1 flavours of domain wall fermions, using data generated

by the UKQCD and RBC collaborations on QCDOC machines.

The paper is organized as follows. In the next section we derive general expressions

for free meson spectral functions on a finite lattice, independent of the particular fermion

formulation that is used. In section 3 we specialize to overlap fermions and compare the

resulting spectral functions, and in particular lattice artefacts, with continuum and stag-

gered spectral functions. This analysis is extended to domain wall fermions in section 4

and to overlap hypercube fermions in section 5. In section 6 we present first results for

pseudoscalar spectral functions in QCD with dynamical domain wall fermions. We find

good agreement between the MEM results and the groundstate mass obtained with con-

ventional cosh fits. We also argue that the structure seen at larger energies is consistent

with lattice artefacts found in the first part of the paper, but a quantitative comparison

requires further study.

2. Spectral functions

We start with a brief summary of well-known relations [2]. Euclidean meson correlators

are defined by

GH(τ,x) = 〈JH(τ,x)J†
H (0,0)〉, (2.1)

where JH(τ,x) = ψ̄(τ,x)ΓHψ(τ,x) and ΓH = {11, γ5, γ
ν , γνγ5} for the scalar, pseudoscalar,

vector and axial vector channels respectively. In general euclidean (and other) correlation

functions are related to their spectral function via a dispersion relation in momentum space,

GH(z,p) =

∫ ∞

0

dω

2π

ρH(ω,p)

ω − z
, (2.2)

where z is the frequency extended into the complex plane. Equating z to iωn, where

ωn = 2πnT (n ∈ Z) is the Matsubara frequency, yields the euclidean correlator at finite

temperature T . In imaginary time this relation reads

GH(τ,p) =

∫ ∞

0

dω

2π
K(τ, ω)ρH(ω,p), (2.3)

with the kernel

K(τ, ω) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )
. (2.4)

At zero temperature, this kernel reduces to K(τ, ω) = e−ωτ .

In this section we derive a general expression for meson spectral functions on an

isotropic lattice with N3
σ × Nτ sites, by writing the euclidean correlators in the form (2.3)

and identifying the lattice spectral function from that expression. We use periodic bound-

ary conditions in space, ki = 2πni/Nσ with ni = −Nσ/2+1,−Nσ/2+2, . . . , Nσ/2−1, Nσ/2

for i = 1, 2, 3, and antiperiodic boundary conditions in imaginary time, k4 = π(2n4 +1)/Nτ
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with n4 = −Nτ/2+1,−Nτ/2+2, . . . , Nτ/2−1, Nτ/2. Lattice units a = 1 are used through-

out.

The correlators we are interested in are of the form

GH(τ,p) = −Nc

N3
σ

∑

k

tr S(τ,k)ΓHS(−τ,p + k)ΓH , (2.5)

where S(τ,k) is the fermion propagator and Nc denotes the number of colours. In order

to derive compact expressions for lattice meson spectral functions, starting from eq. (2.5),

we first discuss a generic fermion propagator, without specifying a particular formulation.

We consider the following fermion propagator

S(K) =
1

D(K)

[

−i

4
∑

ν=1

Cν(K)γν sin kν + m(K)

]

, (2.6)

where K denotes the four-momentum. The functions Cν(K), m(K) and D(K) depend on

the fermion formulation, but they are all invariant under kν → −kν . In order to be able

to use eq. (2.5), we construct the fermion propagator in the mixed representation,

S(τ,k) =
1

Nτ

∑

k4

eik4τS(K). (2.7)

We assume that S(K) has a single pole at k4 = ±iEk, determined by D(iEk,k) = 0. In

the case of more than one pole, a summation over the poles is required. This yields [14]

S(τ,k) = γ4S4(τ,k) +
3

∑

i=1

γiSi(τ,k) + 11Su(τ,k), (2.8)

where

S4(τ,k) = S4(k) cosh(τ̃Ek),

Si(τ,k) = Si(k) sinh(τ̃Ek),

Su(τ,k) = Su(k) sinh(τ̃Ek). (2.9)

Here 0 ≤ τ < Nτ = 1/T and τ̃ = τ − 1/2T . The momentum-dependent coefficients read

S4(k) =
C4(iEk,k)

2Ek

sinh Ek

cosh(Ek/2T )
,

Si(k) =
Ci(iEk,k)

2Ek

i sin ki

cosh(Ek/2T )
,

Su(k) = − m(iEk,k)

2Ek cosh(Ek/2T )
, (2.10)

where
1

2Ek

= i Res
k4=iEk

1

D(K)
. (2.11)

The propagator satisfies S(−τ,k) = γ5S
†(τ,k)γ5.

– 3 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
2

ΓH a
(1)
H a

(2)
H a

(3)
H ΓH a

(1)
H a

(2)
H a

(3)
H

ρS 11 1 −1 1 ρPS γ5 1 −1 −1

ρ00 γ0 1 1 1 ρ00
5 γ0γ5 1 1 −1

ρii γi 3 −1 −3 ρii
5 γiγ5 3 −1 3

ρV γµ 2 −2 −4 ρA γµγ5 2 −2 4

Table 1: Coefficients a
(i)
H

for free spectral functions in different channels H . In the case of γi and

γiγ5, the sum is taken over i = 1, 2, 3; ρV = ρii − ρ00 and ρA = ρii
5 − ρ00

5 .

For reference, we note that for fermions in the continuum one finds the same propa-

gator, with the replacements Ek → Ek, sinhEk → Ek, sin ki → ki, m(iEk,k) → m and

Cν → 1.

Inserting eq. (2.8) in eq. (2.5) gives the euclidean correlator

GH(τ,p) =
4Nc

N3
σ

∑

k

[

a
(1)
H S4(τ,k)S†

4(τ, r)

−a
(2)
H

∑

i

Si(τ,k)S†
i (τ, r) − a

(3)
H Su(τ,k)S†

u(τ, r)
]

, (2.12)

where r = p + k. The coefficients a
(i)
H are given in table 1.1

We will now extract the lattice meson spectral functions. It is straightforward to write

the above expression for GH(τ,p) as

GH(τ,p) =

∫ ∞

0

dω

2π
K(τ, ω)ρlattice

H (ω,p), (2.13)

and identify the expressions for the lattice spectral functions [4]

ρlattice
H (ω,p) =

4πNc

N3
σ

∑

k

sinh
( ω

2T

)

{

[

a
(1)
H S4(k)S†

4(r) + a
(2)
H

∑

i

Si(k)S†
i (r) + a

(3)
H Su(k)S†

u(r)

]

δ(ω + Ek − Er)

+

[

a
(1)
H S4(k)S†

4(r) − a
(2)
H

∑

i

Si(k)S†
i (r) − a

(3)
H Su(k)S†

u(r)

]

δ(ω − Ek − Er)

+(ω → −ω)

}

. (2.14)

This expression is the immediate counterpart of the continuum result [4]

ρcont
H (ω,p) = 2πNc

∫

d3k

(2π)3
1

EkEr

{

[nF (Ek) − nF (Er)]
[

a
(1)
H EkEr + a

(2)
H k · r + a

(3)
H m2

]

δ(ω + Ek − Er)

+ [1 − nF (Ek) − nF (Er)]
[

a
(1)
H EkEr − a

(2)
H k · r− a

(3)
H m2

]

δ(ω − Ek − Er)

−(ω → −ω)

}

, (2.15)

1We use Minkowski gamma-matrices to label the channels, see ref. [4] for further details.
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where nF (ω) = 1/[exp(ω/T ) + 1] is the Fermi distribution, as can be seen by making the

appropriate substitutions. At zero temperature, only the “1” in the second term survives.

In the continuum the remaining three-dimensional integral can be carried out for arbitrary

external momentum and quark mass. Analytical expressions for continuum meson spectral

functions can be found in ref. [4]. Since the expressions are lengthy, we give here the result

at vanishing external momentum only,

ρcont
H (ω,0) = Θ(ω2 − 4m2)

Nc

8π

√

1 − 4m2

ω2

[

1 − 2nF

(ω

2

)]

(2.16)
[

ω2
(

a
(1)
H − a

(2)
H

)

+ 4m2
(

a
(2)
H − a

(3)
H

)]

−4πωδ(ω)Nc

∫

d3k

(2π)3
n′

F (ωk)

ω2
k

[

k2
(

a
(1)
H + a

(2)
H

)

+ m2
(

a
(1)
H + a

(3)
H

)]

.

The first term contributes above threshold (ω > 2m), while the contribution proportional

to ωδ(ω) is related to conserved quantities (see e.g. ref. [15] in relation to transport coeffi-

cients). Note that spectral functions are odd, ρH(−ω,p) = −ρH(ω,p).

On the lattice the spectral functions (2.14) can in general not be evaluated analytically.

Instead, in the following sections we give the explicit expressions for the free fermion

dispersion relation Ek, the coefficients S4(k), Si(k) and Su(k), and the residue Ek, for

overlap, domain wall and overlap hypercube fermions. We use those in eq. (2.14) to compute

lattice spectral functions by performing the spatial lattice sum over k numerically, using

the same approach as in refs. [3, 4].

3. Overlap fermions

The massless overlap (Neuberger) operator is given by

DN = µ

(

1 +
X√
X†X

)

, X = DW − µ, (3.1)

where DW the usual Wilson-Dirac operator and µ is a constant.2 In momentum space, X

reads

X(K) = i
∑

ν

γν sin kν + b(K), b(K) = r
∑

ν

(1 − cos kν) − µ. (3.2)

The corresponding fermion propagator is

S(K) =
1

2µ

(−i
∑

ν γν sin kν

ω(K) + b(K)
+ 1

)

, (3.3)

with

ω(K) =
√

X†X =

√

∑

ν

sin2 kν + b2(K). (3.4)

The poles of the propagator are determined by ω(K) + b(K) = 0, which yields
∑

ν

sin2 kν = 0, b(K) < 0. (3.5)

2In other studies the coefficient µ is sometimes denoted by ρ.
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Writing k4 = iEk gives the dispersion relation

cosh Ek =
√

1 + K2
k
, b(iEk,k) < 0, (3.6)

where we defined

K2
k =

∑

i

sin2 ki. (3.7)

The constraint b < 0 arises from the square root in the definition of ω(K).3 Due to this

constraint, there is only a pole when k is not too large, and there are no solutions near the

edges of the Brillouin zone. Apart from this, the dispersion relation is identical to the one

for naive fermions.

Meson spectral functions for free massless overlap fermions take the form (2.14) of the

previous section, with the now explicitly determined functions (2.10)

Cν(iEk,k) = 1, Su(k) = 0, (3.8)

and the residue (2.11)
1

Ek

=
ω(iEk,k)

µ sinhEk cosh Ek

. (3.9)

Chiral symmetry is manifest in the meson spectral functions, since the expressions in the

scalar (vector) and the pseudoscalar (axial vector) channel only differ with respect to the

coefficient a
(3)
H , see table 1. Since Su = 0, dependence on a

(3)
H vanishes for massless overlap

fermions.

The extension to massive overlap fermions is straightforward. To include the mass,

the overlap operator is changed to

Dov,m0
=

(

1 − m0

2µ

)

DN + m0, (3.10)

and the corresponding propagator is

S(K) =
1

2

(µ − m0/2) [−i
∑

ν γν sin kν + b(K)] + (µ + m0/2)ω(K)

(µ2 + m2
0/4)ω(K) + (µ2 − m2

0/4)b(K)
. (3.11)

We find that the pole is determined by
∑

ν

sin2 kν = −m̄2
0b

2(K),
(

µ2 − m2
0/4

)

b(K) < 0, (3.12)

where we defined

m̄0 =
µm0

µ2 + m2
0/4

. (3.13)

We always consider m0 to be small (in lattice units), while µ ∼ 1, so that the constraint

still implies b < 0. Writing again k4 = iEk and solving the resulting quadratic equation

gives the allowed dispersion relation

cosh Ek =
1

1 − r2m̄2
0

[

−rm̄2
0Mk +

√

(1 + K2
k
)(1 − r2m̄2

0) + m̄2
0M2

k

]

, (3.14)

3Provided that 0 < µ < 2r, there is no pole at k4 = π − iEk, since then the constraint cannot be met.
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provided that

b(iEk,k) = −r cosh Ek + Mk < 0. (3.15)

Here we have defined

Mk = r − µ + r
∑

i

(1 − cos ki). (3.16)

At zero momentum, the rest mass is determined by

cosh E0 =
1

1 − r2m̄2
0

[

r(µ − r)m̄2
0 +

√

1 + m̄2
0µ(µ − 2r)

]

, (3.17)

while at small k and m0 eq. (3.14) reduces to

cosh Ek = 1 +
1

2

(

k2 + m2
0

)

+ . . . , (3.18)

as expected.

We compare the massive overlap dispersion relation with the naive (or staggered)

dispersion relation,

cosh Ek =
√

1 + K2
k

+ m2
0, (3.19)

and the continuum expression Ek =
√

k2 + m2
0 in figure 1 for two values of the overlap

parameter µ and a rest mass mR ≡ E0 = 0.1 (the HF kernel shown as well will be discussed

below). Throughout this paper we take r = 1. We find that the overlap dispersion relation

can hardly be distinguished from the naive one for the value of mR shown here. In the

overlap case the dispersion relation terminates before the edge of the Brillouin zone due

to the constraint b < 0. The momentum value of the endpoint depends on the overlap

parameter µ and increases with increasing µ.

The coefficients in the meson spectral functions now read

Cν(iEk,k) = 1 − m0

2µ
, m(iEk,k) =

m0

µ + m0/2
ω(iEk,k), (3.20)

and the residue is

1

Ek

=
µ

µ2 + m2
0/4

1

cosh Ek + m̄2
0rb(iEk,k)

ω(iEk,k)

sinhEk

. (3.21)

Comparison between these functions at small momentum and their continuum counterparts

shows that there is a multiplicative renormalization of the fermion propagator at finite m0.

This is not unexpected since the kinetic term in (3.11) has a nonstandard normalization.

One way to write the renormalization factor is to compare the expressions at zero spatial

momentum. Explicitly, the renormalization factor is given by

Cν(iE0,0)
E0

E0

. (3.22)

At small K and m0, the euclidean fermion propagator (3.11) is approximately given by

S(K) ≈ µ3(µ − m0/2)
(

µ2 + m2
0/4

)2

[−i /K + m0

K2 + m2
0

+
1

2µ

]

. (3.23)
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0

1

2

3

aE

overlap with massless HF kernel, µ=1
overlap with massive HF kernel, µ=1
overlap with Wilson kernel, µ=1
overlap with Wilson kernel, µ=1.8
naive/staggered
continuum

k=(k,0,0)

am
R
=0.1

0

1

2

3

aE

k=(k,k,0)

0 1 2 3

ak

0

1

2

3

aE

k=(k,k,k)

Figure 1: Dispersion relation along three directions in the Brillouin zone for massive overlap

fermions with rest mass mR = 0.1 using a massive/massless HF kernel with µ = 1 and a standard

Wilson kernel with µ = 1, 1.8. For comparison the naive and continuum dispersion relation are

shown as well.

The multiplicative prefactor goes to 1 in both the chiral and the continuum limit.

We now have all the ingredients to compute spectral functions with free overlap

fermions. In figure 2 we show the pseudoscalar spectral function at zero momentum for
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0 0.5 1 1.5 2 2.5 3

aω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ PS
(ω

,0
)/

ω
2

staggered/naive
overlap with Wilson kernel, µ=1.8
overlap with Wilson kernel, µ=1
continuum

am
R
=0.1

Nτ=32

Figure 2: Pseudoscalar spectral functions ρPS(ω,0)/ω2 for staggered and standard overlap

fermions with µ = 1, 1.8, and mR = 0.1, Nτ = 32.

overlap fermions with µ = 1 and 1.8, staggered fermions and the continuum result (2.17).

All spectral functions increase in the same manner beyond the threshold ω = 2mR, provided

that mR is small. At larger frequencies, effects due to the deviation of the continuum and

lattice dispersion relation become visible. The first cusp is due to the maximal lattice energy

reached at k = (π/2, 0, 0) (cf. figure 1 top), which yields a cusp at aω ≈ 2 cosh−1
√

2 ≈ 1.76.

The difference in height of the spectral functions is due to the different residues, which de-

pends on µ for overlap fermions and for staggered fermions is given by [4]

1

Ek

=
1

cosh Ek sinh Ek

. (3.24)

For staggered fermions, there is a second cusp due to the maximal lattice energy reached at

k = (π/2, π/2, 0). For overlap fermions this cusp is absent (for µ = 1) or less pronounced

(for µ = 1.8), since the constraint has terminated the dispersion relation (cf. figure 1

middle). The maximal energy is given by ωmax = 2Ekmax, which for staggered fermions is

reached at k = (π/2, π/2, π/2) and given by aω ≈ 2 cosh−1 2 ≈ 2.63. For overlap fermions,

this region is again modified due to the constraint.

The effect of finite Nτ is shown in figure 3 for overlap fermions with µ = 1 and is seen

to be negligible for large enough values of Nτ .

Finally, lattice spectral functions at nonzero momentum are similar to the continuum

ones in the small frequency region aω . 0.5 and lattice artefacts at larger ω are not affected

by the external momentum, provided that the external momentum is small (see ref. [4] for

further details).
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0 0.5 1 1.5 2 2.5 3

aω

0

0.1

0.2

0.3

0.4

ρ PS
(ω

,0
)/

ω
2

Nτ=16
Nτ=24
Nτ=32
continuum

am
R
=0.1

overlap with Wilson kernel, µ=1

Figure 3: Nτ dependence of the pseudoscalar spectral function ρPS(ω,0)/ω2 for standard overlap

fermions (µ = 1, mR = 0.1).

4. Domain wall fermions

The four-dimensional massive domain wall propagator, assuming an infinite extent of the

fifth dimension, reads

S(K) =
−i

∑

ν γν sin kν + m0 (1 − |W |e−α)

eα|W | − 1 + m2
0 (1 − |W |e−α)

, (4.1)

where

cosh α =
1 + W 2 +

∑

ν sin2 kν

2|W | , (4.2)

W = 1 − µ +
∑

ν

(1 − cos kν). (4.3)

The domain wall height is denoted with µ and is taken between 0 and 2. For small

momentum and 1 < µ < 2, W is negative (see e.g. ref. [16] for a recent review).

The dispersion relation is determined by the pole in the propagator at k4 = iEk. Again

we find a quadratic equation for cosh Ek, with the allowed solution

cosh Ek =
xk + (1 + m2

0)
√

yk

zk

, (4.4)

with

xk = −2m2
0 (1 + Mk)

[

1 + K2
k

+ Mk(2 + Mk)
]

,

yk =
(

1 + K2
k

) (

1 − m2
0

)2
+ m2

0

[

1 + K2
k −Mk(2 + Mk)

]2
,

zk = (1 − m2
0)

2 − 4m2
0Mk(2 + Mk), (4.5)
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where Mk is given in eq. (3.16) with r = 1.

For massless domain wall fermions, eq. (4.4) reduces to

cosh Ek =
√

1 + K2
k
, (4.6)

as in the overlap formalism. The rest mass is determined by

cosh E0 =
2m2

0(µ − 2)3 + (1 + m2
0)

√

1 + m2
0(2 + µ(µ − 4)(µ − 2)2) + m4

0

1 − 2m2
0(2µ

2 − 8µ + 7) + m4
0

. (4.7)

Expanding the massive case for small k and m0, we find

cosh Ek = 1 +
1

2

(

k2 + m2
eff

)

+ . . . , (4.8)

where meff = (1 − w2
0)m0 is the multiplicatively renormalized fermion mass. The multi-

plicative factor reads

1 − w2
0 = µ(2 − µ), w0 = W (0) = 1 − µ. (4.9)

In the limit that m0 ¿ 1, mR = meff . The constraint on the allowed fermion energies

arises in this case from the behaviour of the propagator in the fifth direction: demanding

a normalizable solution of the five-dimensional Dirac equation yields the constraint

|W (iEk,k)| < 1, (4.10)

both in the massless and the massive case.4

The resulting dispersion relation (4.4) is indistinguishable from the dispersion relation

for massive overlap fermions for small values of m0, shown in figure 1. At finite values of

m0, deviations are more pronounced for larger values of µ.

The coefficients in the meson spectral functions read

Cν(iEk,k) = 1, m(iEk,k) = m0

(

1 − 1

2
A−

)

, (4.11)

and the residue reads

1

Ek

=
2

A+ (1 + Mk) − 2W + m2
0 [A− (1 + Mk) − 2W ]

√
A2 − 4W 2

sinhEk

. (4.12)

Here we defined

A± = A ±
√

A2 − 4W 2, A = 1 + W 2 − sinh2 Ek + K2
k, (4.13)

and all quantities are evaluated onshell at K = (iEk,k). In the massless case the residue

simplifies considerably to
1

Ek

=
1 − W 2(iEk,k)

cosh Ek sinh Ek

. (4.14)

4We note here that W (iEk, k) is always larger than −1, so that this constraint coincides with b(iEk, k) <

0 in the overlap formalism, since W = 1 + b.
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Figure 4: Pseudoscalar spectral functions ρPS(ω,0)/ω2 for domain wall fermions (with µ =

1, 1.3, 1.4 and µ = 1.8 in the inset) and standard overlap fermions (with µ = 1).

At small K and m0, the euclidean fermion propagator is approximately given by

S(K) ≈
(

1 − w2
0

) −i /K + meff

K2 + m2
eff

, (4.15)

which suggests a multiplicative renormalization factor 1 − w2
0. However, we have found

numerically that corrections to this renormalization factor are large for small but finite m0

and larger values of µ. From a comparison of the expressions at zero spatial momentum,

we find the multiplicative factor to be
E0

E0

, (4.16)

which deviates substantially from 1−w2
0 for the largest value of µ used here. The resulting

spectral functions are shown in figure 4 for different values of µ. To obtain these spectral

functions, we fix the rest mass mR = 0.1 and solve for the bare mass m0 using eq. (4.7).

Subsequently we find the multiplicative factor using (4.16) to properly set the vertical scale.

As can be seen in figures 4 and 2, the spectral functions obtained from overlap and

domain wall fermions differ at larger frequencies. The overlap spectral functions show

reduced discretization effects. We note that is due to the difference in residues, and not

because of the dispersion relations. Increasing the domain wall height shows that the µ

dependence is much stronger than in the overlap case. For µ = 1.8 the effect is remarkably

large.

5. Overlap hypercube fermions

The overlap formalism solves the chirality problem in lattice QCD. However, its disper-
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massless HF massive HF massless HF massive HF

ρ(1) 0.136846794 0.054580 λ(0) 1.852720547 1.268851

ρ(2) 0.032077284 0.011010 λ(1) -0.060757866 -0.030083

ρ(3) 0.011058131 0.003255 λ(2) -0.030036032 -0.010830

ρ(4) 0.004748991 0.001206 λ(3) -0.015967620 -0.004716

λ(4) -0.008426812 -0.002212

Table 2: Coefficients ρ(a) and λ(a) in the hypercube action for massless (mR = 0) and massive

(mR = 1) hypercube fermions.

sion relation shows no reduction in discretisation effects when compared to e.g. staggered

fermions. A systematic approach to constructing fermion actions which have good chi-

ral properties and very small discretisation errors is based on the renormalisation group

(RG). In this approach one aims to approximate so-called ‘perfect actions’, which lie on the

renormalized trajectory of an RG transformation [17, 18]. Here we consider a particular

truncation of a perfect action, the hypercube fermion (HF) action introduced in ref. [19].

This action is obtained from an RG transformation which yields an ultralocal action in one

dimension [20]. For a recent review, see ref. [21].

The hypercube action is written as

S =
∑

x,y

ψ̄(x)

{

∑

ν

γνρν(x − y) + λ(x − y)

}

ψ(y), (5.1)

where the couplings ρν and λ are nonzero only if x and y are in the same hypercube.

Explicitly, the corresponding Dirac operator reads, in momentum space,

DHF(K) = i
∑

ν

CHF
ν (K)γν sin kν + mHF(K), (5.2)

with

CHF
ν (K) = 2ρ(1) + 4ρ(2)

∑

σ 6=ν

cos kσ + 8ρ(3)
∑

σ 6=ν

∏

η 6=ν,σ

cos kη + 16ρ(4)
∏

σ 6=ν

cos kσ, (5.3)

and

mHF(K) = λ(0) + 2λ(1)
∑

ν

cos kν + 4λ(2)
∑

ν

∑

σ>ν

∏

η 6=ν,σ

cos kη

+8λ(3)
∑

ν

∏

σ 6=ν

cos kσ + 16λ(4)
∏

ν

cos kν . (5.4)

The coefficients ρ(a) and λ(a) are determined by requiring that this action reproduces the

perfect action on a finite volume with sides of length 3, and periodic boundary conditions,

see table 2 for two examples.

In the limit of zero momentum, the action coefficients satisfy

CHF
ν (0) = 2

[

ρ(1) + 6ρ(2) + 12ρ(3) + 8ρ(4)
]

=

(

mR

emR − 1

)2

, (5.5)

– 13 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
2

0 1 2 3 4 5 6

aω

0

0.1

0.2

0.3

0.4

ρ PS
(ω

,0
)/

ω
2

overlap with Wilson kernel
overlap with massive HF kernel
overlap with massless HF kernel
continuum

am
R
=0.1

Nτ=32

µ=1

Figure 5: Pseudoscalar spectral functions ρPS(ω,0)/ω2 for overlap fermions with a standard and

a massless/massive HF kernel (µ = 1, mR = 0.1, Nτ = 32).

mHF(0) = λ(0) + 8λ(1) + 24λ(2) + 32λ(3) + 16λ(4) =
m2

R

emR − 1
, (5.6)

where mR = E0 is the rest mass in HF dispersion relation. These relations follow from the

expression for the one-dimensional fixed point action, which can be evaluated explicitly,

and ultimately they depend on the RG transformation used to construct the action.

The truncation involved in the construction of the hypercube action introduces chiral

symmetry breaking and discretisation errors. If the truncation is justified, these effects

will be small.5 Following ref. [11], exact chiral symmetry can be restored by using the

hypercube operator as the kernel for the overlap operator. The resulting overlap operator

should inherit many of the properties of the kernel and, in particular, have much smaller

cutoff effects than the standard overlap operator.

To determine the expression for the overlap hypercube propagator we first write the

expression for the kernel, X = DHF − µ, in momentum space, and

X(K) = i
∑

ν

CHF
ν (K)γν sin kν + b(K), b(K) = mHF(K) − µ. (5.7)

The corresponding propagator for massive overlap fermions is obtained by multiplying

sin kν with CHF
ν (K) in eq. (3.11) of section 3. Writing k4 = iEk, the dispersion relation is

again determined by a quadratic equation for coshEk. Since the explicit expressions are

rather lengthy, we have listed them in appendix A.

5For studies of meson spectral functions using hypercube fermions in quenched QCD, see refs. [12, 13].
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Figure 6: As in figure 5 for the vector spectral function ρV(ω,0)/ω2.

In the limit of small k and m0, we find that the overlap HF dispersion relation reduces

to

cosh Ek = 1 +
1

2

(

k2 + m2
eff

)

+ . . . (5.8)

where the renormalized fermion mass is

meff =
µ − mHF(0)

µCHF
ν (0)

m0. (5.9)

Using eqs. (5.5), (5.6), we find that the overlap mass m0 receives a multiplicative renormal-

ization for massive HF, while for massless HF such renormalization is absent. For massless

overlap fermions, the dependence on the coefficients in the HF kernel cancels completely

in the limit of small momentum.

The resulting dispersion relations along three direction in the Brillouin zone are shown

in figure 1 for overlap fermions with both a massless and a massive (with HF rest mass

mR = 1) HF kernel. Note that we fixed the overlap rest mass at 0.1 and determined the

bare mass from eq. (5.9). It is clear that the improved scaling of the HF kernel ensures

agreement with the continuum dispersion relation for much larger momenta. The deviation

at larger momenta results in the behaviour ∂Ek/∂k > 1, which is especially pronounced

for the massless kernel.

The coefficients in the meson spectral functions are given in eq. (3.20), after multi-

plying Cν(iEk,k) with CHF
ν (iEk,k). The residue is given by eq. (A.9). Comparison of

the coefficients and the residue with their continuum counterparts shows again that the

fermion propagator receives a multiplicative renormalization. Expanding the HF overlap
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propagator for small K and m0 yields

S(K) ≈ µ3(µ − m0/2)
(

µ2 + m2
0/4

)2

[

µ − mHF(0)

µCHF
ν (0)

−i /K + meff

K2 + m2
eff

+
1

2µ

]

, (5.10)

where meff was defined above. For overlap fermions with a massive HF kernel we find

therefore that both the overlap mass and the fermion propagator are renormalized by the

factor [µ − mHF(0)] /µCHF
ν (0).

Meson spectral functions with overlap hypercube fermions are shown in figure 5 for the

pseudoscalar and figure 6 for the vector channel. Besides a factor of 2 (see table 1), these

spectral functions differ in detail around the knee at aω ∼ 0.5, which can be understood

from the continuum expression (2.17). As expected, the first cusp in the spectral functions

is shifted to substantially larger frequencies, determined by twice the maximal energy along

the (1, 0, 0) direction, yielding aω ∼ 3.75 (5.0) for the massive (massless) HF kernel, as can

be seen from figure 1 (top). As a result, the continuum behaviour at larger frequencies,

ρ(ω) ∼ ω2, is better reproduced. However, we would like to point out that the contributions

from these large frequencies are highly suppressed in the euclidean correlator. Taking for

simplicity the zero temperature kernel K(τ, ω) = e−ωτ = e−aωnτ , we find that already at

the first time slice K ∼ e−5 when aω ∼ 5, demonstrating the insensitivity to these large

frequencies.

6. QCD with dynamical domain wall fermions

We now build on the free field calculations and consider spectral functions in QCD. Most

spectral function studies to date have been carried out in quenched QCD; for recent work,

see e.g. ref. [22] and references therein. A study of charmonium spectral functions in

dynamical QCD with two flavours on highly anisotropic lattices can be found in ref. [23].

Spectral functions at nonzero momentum in quenched QCD are considered in refs. [24, 25].

In this section, we consider spectral functions at zero momentum, extracted from meson

correlators obtained in dynamical lattice simulations. These correlators are computed using

the domain wall fermion action on 2+1 flavour background configurations employing the

Iwasaki gauge action [26, 27].6 This data has been generated by the RBC and UKQCD

collaborations [29 – 33] on QCDOC [34 – 36]. Here, we present results obtained on a 163×32

lattice at β = 2.13 with an inverse lattice spacing of 1.6 GeV [33]. The number of points

in the fifth dimension is Ns = 16.

In practical implementations of the domain wall fermion formalism it is important

to choose a domain wall height that minimises the mixing between right and left-handed

fermion modes at zero bare quark mass. This mixing, which vanishes in the limit Ns → ∞,

induces some residual chiral symmetry breaking and generates, for example, an additive

quark mass renormalisation. In free field theory the optimal value for the domain wall

height is unity. However, in the interacting theory, the domain wall height receives a large

additive correction and the bare parameter should be adjusted accordingly [37, 38]. The

6Meson spectral functions using domain wall fermions in quenched QCD have been studied in ref. [28].
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Figure 7: Pseudoscalar spectral functions in QCD with 2 + 1 flavours of dynamical domain wall

fermions, determined using the Maximum Entropy Method, for different values of the valence

quark masses. The vertical dotted lines indicate groundstate masses obtained with conventional

cosh fits [29]. The inset shows a blow-up of the second bump.

bare domain wall height used in these simulations is µ = 1.8. Subtracting a simple mean-

field estimate for the radiative corrections [39] yields a value for the domain wall height of

µMF = 1.3029 [40], which is much closer to unity.

In this first study we show results obtained with a light bare sea quark mass mud = 0.02

and a heavier sea quark mass ms = 0.04. To preserve unitarity, the valence quarks are

constrained to take the same bare mass values as the sea quarks. To determine the spectral

functions the Maximum Entropy Method [2] is applied to correlation functions measured

on an ensemble of 70 independent gauge field configurations. The meson interpolating

operators used are local quark field bilinears. The meson correlators are symmetric about

the central time slice of the lattice. In our analysis we average the correlation functions

over equivalent time slices and exclude the contact term at τ = 0. The MEM algorithm

uses Bryan’s method [41]. As the default model we take ρdefault(ω,0) = m0ω
2, where the

constant m0 is determined by a best fit to the data.

In figure 7 we show spectral functions obtained from pseudoscalar correlators evaluated

for different valence quark masses. For each quark mass combination clear peaks are

visible whose position corresponds to the energy of the lightest state that couples to the

interpolating operators. The horizontal errorbars on these peaks give a measure of the

peak width, while the vertical errorbars are inversely proportional to the significance of the

peak. As expected, the position of the low-lying peak increases as the average valence quark

mass is increased. The dotted vertical lines passing through each of these peaks indicate the

values for the ground state energies obtained from double cosh fits to the correlators [29].
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Therefore, for the groundstates we find that the results of the MEM analysis are in precise

agreement with the results of conventional fitting techniques.

At higher frequencies, 1 < aω < 2, second much broader bumps are visible. There

appears to be no significant valence quark mass dependence of the position of these second

peaks. We note that the heights of the bumps are of the same order as the structure due to

the cusps observed in the free fermion calculation, for a domain wall height of unity.7 From

our earlier analysis, we find therefore that the position of these bumps is not inconsistent

with their identification as lattice artefacts. However, these peaks may also contain excited

state contributions, but due to the width of the peaks these are difficult to resolve. An

unambiguous way to disentangle excited state resonances from the contribution due to

lattice artefacts is to carry out an analysis at different lattice spacings. With current data,

this option is not yet available.8

7. Summary

We have analyzed meson spectral functions from lattice fermions with chiral symmetry.

For free fermions, we have given a general prescription on how to construct lattice meson

spectral functions from the euclidean fermion propagator, extending the analysis of ref. [4].

We have subsequently applied this to overlap fermions, domain wall fermions and overlap

hypercube fermions. Lattice artefacts appear at (twice the) frequencies at which the lattice

dispersion relation Ek deviates from the continuum relation. The most pronounced effect

is the appearance of cusps at frequencies determined by ∂Ek/∂k = 0. For most fermion

formulations (Wilson, staggered, standard overlap, domain wall), these cusps appear at

frequencies 1 < aω < 2. In order to shift these artefacts to higher energies, it is necessary

to use lattice fermions with improved scaling behaviour, such as hypercube fermions. In

our spectral function analysis, we found that using the hypercube operator as a kernel in

the overlap formalism indeed yields a formulation with good chiral and scaling behaviour,

as could be anticipated from previous studies [11].

From a comparison between overlap and domain wall spectral functions, we found that

the latter have a remarkably strong dependence on the domain wall height, whereas the

dependence on the corresponding parameter in the case of the overlap operator is much

milder. For a domain wall height of unity and a small fermion mass, we found that the

overlap and domain wall spectral functions are comparable.

In the final section of the paper we have performed a Maximum Entropy analysis of

pseudoscalar spectral functions in QCD with dynamical domain wall fermions, using data

generated by the UKQCD and RBC collaborations. We found good agreement between

the groundstate masses, determined by conventional cosh fits, and the position of the peak

in the spectral functions. At larger frequencies, 1 < aω < 2, a second peak can be seen.

7Note, however, that we have not applied wave function renormalization, which affects the vertical

scale. Moreover, the free calculation indicates a strong dependence on the domain wall height, such that a

quantitative comparison would require knowledge of the renormalized domain wall height.
8Unphysical structure at higher frequencies has also been observed in quenched simulations with Wilson

fermions. In refs. [42, 43] this was interpreted as bound states of Wilson doublers.
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We have argued that this structure is not inconsistent with the lattice artefacts found

in the analytical study, although the presence of excited states cannot be excluded. An

unambiguous way to distinguish (physical) excited states from (unphysical) lattice artefacts

discussed here, is to repeat the analysis at different lattice spacings.
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A. More on overlap hypercube fermions

In this appendix we collect some expressions for overlap hypercube fermions, discussed in

section 5.

The pole is determined by

∑

ν

CHF
ν

2
(K) sin2 kν = −m̄2

0b
2(K), b(K) < 0, (A.1)

where m̄0 was defined in eq. (3.7). In order to solve for the dispersion relation, we follow

ref. [3] and use the notation

CHF
4 (K) = δk,

CHF
i (K) sin ki = αik + βik cos k4,

mHF(K) = κ1k + κ2k cos k4, (A.2)

and

α2
k =

3
∑

i=1

α2
ik, β2

k =

3
∑

i=1

β2
ik, αk · βk =

3
∑

i=1

αikβik. (A.3)

Expressions for αik, βik, δk, and κ1,2k can easily be derived from these definitions combined

with eqs. (5.3), (5.4). Explicit expressions are given in eqs. (B.1-B.9) of ref. [3].

Writing k4 = iEk yields again a quadratic equation for cosh Ek, where the allowed

solution is of the form

cosh Ek =
xk +

√
yk

zk

, (A.4)
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with

xk = αk · βk + m̄2
0κ2k (κ1k − µ) ,

yk = (αk · βk)2 +
(

δ2
k
− β2

k

) (

δ2
k

+ α2
k

)

+m̄2
0

[

2 (αk · βk) κ2k (κ1k − µ) + (κ1k − µ)2
(

δ2
k − β2

k

)

− κ2
2k

(

δ2
k + α2

k

)

]

,

zk = δ2
k − β2

k − m̄2
0κ

2
2k. (A.5)

The root (xk −√
yk)/zk < 0 for all momenta inside the Brillouin zone and therefore not a

valid solution, in contrast to the standard HF case.

The rest mass is given by

cosh E0 =

m̄2
0κ20 (κ10 − µ) + δ0

√

δ2
0

+ m̄2
0

[

(κ10 − µ)2 − κ2
20

]

δ2
0
− m̄2

0κ
2
20

, (A.6)

where

κ10 = λ(0) + 6λ(1) + 12λ(2) + 8λ(3), (A.7)

κ20 = 2λ(1) + 12λ(2) + 24λ(3) + 16λ(4). (A.8)

The explicit expression for the residue reads

1

Ek

=
µ

µ2 + m2
0/4

1

(δ2
k
− β2

k
) cosh Ek − αk · βk − m̄2

0κ2kb(iEk,k)

ω(iEk,k)

sinh Ek

. (A.9)

There exists no pole at k4 = π − iEk, provided b(K) = mHF(K) − µ > 0, or

µ < κ1k − κ2k cosh Ek. (A.10)

Since κ1,2k depend on in a nontrivial manner on the coefficients in the HF kernel, this

constraint on µ has to be verified on a case by case situation.
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